You are here:  Home  >  Things You Should Know  >  Current Article

A.I. Next Campaign

By   /  Tue 18 Rabi Al Thani 1440AH 25-12-2018AD  /  No Comments

    Print       Email

Defense Advanced Research Projects AgencyWork With Us

AI Next Campaign

For more than five decades, DARPA has been a leader in generating groundbreaking research and development (R&D) that facilitated the advancement and application of rule-based and statistical-learning based AI technologies. Today, DARPA continues to lead innovation in AI research as it funds a broad portfolio of R&D programs, ranging from basic research to advanced technology development. DARPA believes this future, where systems are capable of acquiring new knowledge through generative contextual and explanatory models, will be realized upon the development and application of “Third Wave” AI technologies.

DARPA announced in September 2018 a multi-year investment of more than $2 billion in new and existing programs called the “AI Next” campaign. Key areas of the campaign include automating critical DoD business processes, such as security clearance vetting or accrediting software systems for operational deployment; improving the robustness and reliability of AI systems; enhancing the security and resiliency of machine learning and AI technologies; reducing power, data, and performance inefficiencies; and pioneering the next generation of AI algorithms and applications, such as “explainability” and common sense reasoning.

AI Next builds on DARPA‘s five decades of AI technology creation to define and to shape the future, always with the Department’s hardest problems in mind. Accordingly, DARPA will create powerful capabilities for the DoD by attending specifically to the following areas:

  • New Capabilities: AI technologies are applied routinely to enable DARPA R&D projects, including more than 60 exisiting programs, such as the Electronic Resurgence Initiative, and other programs related to real-time analysis of sophisticated cyber attacks, detection of fraudulent imagery, construction of dynamic kill-chains for all-domain warfare, human language technologies, multi-modality automatic target recognition, biomedical advances, and control of prosthetic limbs. DARPA will advance AI technologies to enable automation of critical Department business processes. One such process is the lengthy accreditation of software systems prior to operational deployment. Automating this accreditation process with known AI and other technologies now appears possible.
  • Robust AI: AI technologies have demonstrated great value to missions as diverse as space-based imagery analysis, cyberattack warning, supply chain logistics and analysis of microbiologic systems. At the same time, the failure modes of AI technologies are poorly understood. DARPA is working to address this shortfall, with focused R&D, both analytic and empirical. DARPA’s success is essential for the Department to deploy AI technologies, particularly to the tactical edge, where reliable performance is required.
  • Adversarial AI: The most powerful AI tool today is machine learning (ML). ML systems can be easily duped by changes to inputs that would never fool a human. The data used to train such systems can be corrupted. And, the software itself is vulnerable to cyber attack. These areas, and more, must be addressed at scale as more AI-enabled systems are operationally deployed.
  • High Performance AI: Computer performance increases over the last decade have enabled the success of machine learning, in combination with large data sets, and software libraries. More performance at lower electrical power is essential to allow both data center and tactical deployments. DARPA has demonstrated analog processing of AI algorithms with 1000x speedup and 1000x power efficiency over state-of-the-art digital processors, and is researching AI-specific hardware designs. DARPA is also attacking the current inefficiency of machine learning, by researching methods to drastically reduce requirements for labeled training data.
  • Next Generation AI: The machine learning algorithms that enable face recognition and self-driving vehicles were invented over 20 years ago. DARPA has taken the lead in pioneering research to develop the next generation of AI algorithms, which will transform computers from tools into problem-solving partners. DARPA research aims to enable AI systems to explain their actions, and to acquire and reason with common sense knowledge. DARPA R&D produced the first AI successes, such as expert systems and search, and more recently has advanced machine learning tools and hardware. DARPA is now creating the next wave of AI technologies that will enable the United States to maintain its technological edge in this critical area.

In addition to new and existing DARPA research, a key component of the campaign will be DARPA’s Artificial Intelligence Exploration (AIE) program, which was first announced in July 2018. AIE constitutes a series of high-risk, high payoff projects where researchers will work to establish the feasibility of new AI concepts within 18 months of award. Leveraging streamlined contracting procedures and funding mechanisms will enable these efforts to move from proposal to project kick-off within three months of an opportunity announcement. Forthcoming AIE Opportunities will be published on the FedBizOpps website under Program Announcement DARPA-PA-18-02.


The advance of technology has evolved the roles of humans and machines in conflict from direct confrontations between humans to engagements mediated by machines. Originally, humans engaged in primitive forms of combat. With the advent of the industrial era, however, humans recognized that machines could greatly enhance their warfighting capabilities. Networks then enabled teleoperation, which eventually proved vulnerable to electronic attack and subject to constraint due to long signal propagation distances and times. The next stage in warfare will involve more capable autonomous systems, but before we can allow such machines to supplement human warfighters, they must achieve far greater levels of intelligence.

Traditionally, we have designed machines to handle well-defined, high-volume or high-speed tasks, freeing humans to focus on problems of ever-increasing complexity. In the 1950s and 1960s, early computers were automating tedious or laborious tasks. It was during this era that scientists realized it was possible to simulate human intelligence and the field of artificial intelligence (AI) was born. AI would be the means for enabling computers to solve problems and perform functions that would ordinarily require a human intellect.

Early work in AI emphasized handcrafted knowledge, and computer scientists constructed so-called expert systems that captured the specialized knowledge of experts in rules that the system could then apply to situations of interest. Such “first wave” AI technologies were quite successful – tax preparation software is a good example of an expert system – but the need to handcraft rules is costly and time-consuming and therefore limits the applicability of rules-based AI.

The past few years have seen an explosion of interest in a sub-field of AI dubbed machine learning that applies statistical and probabilistic methods to large data sets to create generalized representations that can be applied to future samples. Foremost among these approaches are deep learning (artificial) neural networks that can be trained to perform a variety of classification and prediction tasks when adequate historical data is available. Therein lies the rub, however, as the task of collecting, labelling, and vetting data on which to train such “second wave” AI techniques is prohibitively costly and time-consuming.

DARPA envisions a future in which machines are more than just tools that execute human-programmed rules or generalize from human-curated data sets. Rather, the machines DARPA envisions will function more as colleagues than as tools. Towards this end, DARPA research and development in human-machine symbiosis sets a goal to partner with machines. Enabling computing systems in this manner is of critical importance because sensor, information, and communication systems generate data at rates beyond which humans can assimilate, understand, and act. Incorporating these technologies in military systems that collaborate with warfighters will facilitate better decisions in complex, time-critical, battlefield environments; enable a shared understanding of massive, incomplete, and contradictory information; and empower unmanned systems to perform critical missions safely and with high degrees of autonomy. DARPA is focusing its investments on a third wave of AI that brings forth machines that understand and reason in context.

    Print       Email
  • Published: 9 months ago on Tue 18 Rabi Al Thani 1440AH 25-12-2018AD
  • By:
  • Last Modified: December 25, 2018 @ 3:47 pm
  • Filed Under: Things You Should Know

Leave a Reply

Your email address will not be published. Required fields are marked *

You might also like...

How does slavery benefit “so called” white people today?

Read More →